

Implant Bell Cap Bridge

Rapidly built economical structure for emergency temporary bridges, temporary platforms and permanent bridges etc.

Category

Prefabricated Steel Single-pier Bridge

[Specifications]

- Span: 6m
- Bridge Width: 6.0m
- Live Load : Live Load Condition A (Japanese Specifications)
- Bridge Deck: Steel Deck (2.0m x 6.0m)
- Structural Members: Tubular Pile 800mm O.D.12mm w.t. (SKK400) Bell Cap 2,200mm O.D. (SS400)

Main Crossbeam

(3no. Universal Columns 350x350x12x19)

Characteristics

Geotechnical information can be obtained from pile penetration resistance force during rotary jack-in installation.

Construction Sequence Structural Advantages

Emergency Temporary Bridge

Application

emergency restoration works

Step1: Installation of Step2: Installation of **Tubular Pile** Bell Cap Step3: Completion of Step4: Installation of

Pier Structure

Step5: Installation of Steel Deck

Main Crossbeam

- Multi stress dispersion system with the bell cap drastically increasing bearing capacity and lateral resistance of the
- Embedded depth of tubular piles can be reduced by the increased stress dispersion effect of the bell cap.

Advantages of Construction Method

- Gyropress Method (Rotary Jack-in Method) is applicable in any ground conditions.
- Real-time geotechnical information can be obtained during the pile installation process, which verifies the structural stability of the bridge.
- The bridge can easily be constructed and dismantled, therefore it can be reused for future projects.
- Environmentally Friendly (ultra low noise and vibration)

Overview of Implant Bell Cap Bridge

Full-scale Field Tests

Load Testings

- 1. Date
 - Thu 25/02/2016
- 2. Location

GIKEN Ltd. Test Field in Konan-shi, Kochi, Japan

Construction Revolution

Verification of vertical and lateral bearing capacity of Implant Bell Cap Bridge

4. Bridge Pier Components

Tubular Pile: 800mm O.D.

L=9.0m (embedded depth of 4.4m)

Bell Cap: 2,200mm O.D.

Vertical Static Load Testing

Loads at 80mm pile head displacement (i.e. 10% of the pile diameter) oTubular Pile without Bell Cap: 577.2kN

∘Tubular Pile with Bell Cap: 993.8kN

(70% greater than that of the pile without Bell Cap)

Lateral Static Load Testing

