Implant Bell Cap Bridge

Rapidly built economical structure for emergency temporary bridges, temporary platforms and permanent bridges etc.

Category	Prefabricated Steel Single-pier Bridge

Characteristics

Application

Emergency Temporary Bridge

Construction Sequence

Step 1: Installation of Tubular Pile

Step 2: Installation of Bell Cap

Step 3: Completion of Pier Structure

Step 4: Installation of Main Crossbeam

Step 5: Installation of Steel Deck

Step 6: Move to next piling position

Geotechnical information can be obtained from pile penetration resistance force during rotary jack-in installation.

Structural Advantages

- Multi stress dispersion system with the bell cap drastically increasing bearing capacity and lateral resistance of the piers.
- Embedded depth of tubular piles can be reduced by the increased stress dispersion effect of the bell cap.

Advantages of Construction Method

- Gyropress Method (Rotary Jack-in Method) is applicable in any ground conditions.
- Real-time geotechnical information can be obtained during the pile installation process, which verifies the structural stability of the bridge.
- The bridge can easily be constructed and dismantled, therefore it can be re-used for future projects.
- Environmentally Friendly (ultra low noise and vibration)

Overview of Implant Bell Cap Bridge

For more contact information, please visit: http://www.giken.com/en/contactus/groupcompanies
Full-scale Field Tests

1. **Date**
 Thu 25/02/2016

2. **Location**
 GIKEN Ltd. Test Field in Konan-shi, Kochi, Japan

3. **Purpose**
 Verification of vertical and lateral bearing capacity of Implant Bell Cap Bridge

4. **Bridge Pier Components**
 - Tubular Pile: 800mm O.D.
 - L=9.0m (embedded depth of 4.4m)
 - Bell Cap: 2,200mm O.D.

Load Testings

1. **Vertical Static Load Testing**
 - **Date**: Thu 25/02/2016
 - **Location**: GIKEN Ltd. Test Field in Konan-shi, Kochi, Japan
 - **Purpose**: Verification of vertical and lateral bearing capacity of Implant Bell Cap Bridge

 Bridge Pier Components
 - Tubular Pile: 800mm O.D.
 - Bell Cap: 2,200mm O.D.

 Details of Structure
 - Steel Deck
 - Universal Column
 - Main Crossbeam
 - Bell Cap

 Loads at 80mm pile head displacement (i.e. 10% of the pile diameter)
 - Tubular Pile without Bell Cap: 577.2kN
 - Tubular Pile with Bell Cap: 993.8kN
 (70% greater than that of the pile without Bell Cap)

 Load at 15mm lateral displacement at ground level
 - Tubular Pile without Bell Cap: 78.7kN
 - Tubular Pile with Bell Cap: 125.1kN
 (60% greater than that of the pile without Bell Cap)

Vertical Static Load Testing

- Hydraulic Jack
- Load Cell
- Test Pile
- Reaction Pile

Lateral Static Load Testing

- Hydraulic Jack
- Load Cell
- Tensile Steel Bar φ36mm
- Test Pile
- Reaction Pile

Load Cell

- Hydraulic Jack
- Load Cell
- Tensile Steel Bar φ36mm
- Test Pile
- Reaction Pile

Steel Deck

- Universal Column
- Main Crossbeam

Bell Cap

<table>
<thead>
<tr>
<th>Item</th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel Deck</td>
<td>3644kg</td>
</tr>
<tr>
<td>Tubular Pile</td>
<td>233kg/m</td>
</tr>
<tr>
<td>Main Crossbeam</td>
<td>2900kg</td>
</tr>
<tr>
<td>Bell Cap</td>
<td>1300kg</td>
</tr>
</tbody>
</table>