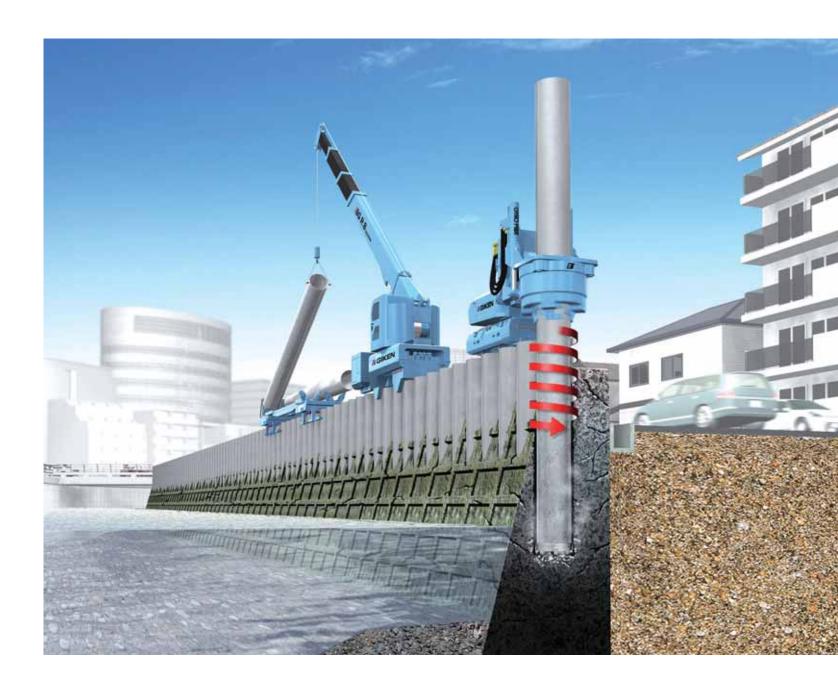
Construction Revolution


THE FIVE CONSTRUCTION PRINCIPLES

If we analyse all the parties involved in any construction work, we can categorise them into three main groups: the client, the contractor and the general public. The ideal situation is when all three parties are in agreement and satisfied with the successful outcome of the construction work. Problems arise when one of the parties becomes a victim of imbalance in this relationship. The conventional construction methods based upon principles that "more is paid for less efficient work" are no longer appropriate to present-day society. Universally acceptable construction methods must embody the Five Construction Principles.

Environmental Protection	Construction work should be environmentally friendly and free from pollution.				
Safety	Construction work has to be carried out in safety and comfort with a method implementing the highest safety criteria.				
Speed	Construction work should be completed in the shortest possible period of time.				
Economy	Construction work must be done rationally with an inventive mind to overcome all constraints at the lowest cost.				
Aesthetics	Construction work must proceed smoothly and the finished product should portray cultural and artistic flavour.				

Gyropress Method[™]

Construction Solutions Company

www.giken.com

CONTACT US

Self-Walking Rotary Press-in Method for Tubular Piles with Tip Bit

Introduction

Social infrastructures, such as roads, rivers, bridges, and levees, protect our life and property, and provide comfortable and cultural life. However, it is required to re-evaluate many of them in terms of "objective", "function" and "location" due to physical degrading by long time use, rapid urbanisation and changes in public demand.

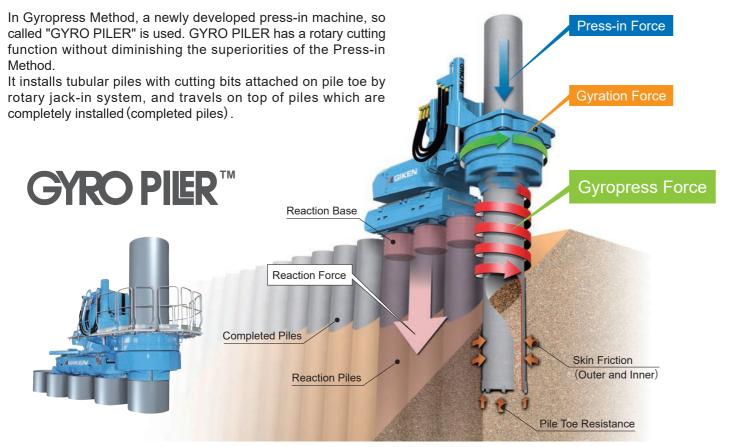
Despite such requirement, many of these social infrastructures are concrete constructions, which are very difficult to be dismantled, removed, or added additional functions. The major factors are that they are constructed without plans of dismantling and removal, and that there are many physical restrictions for such works because of congested building urbanization.

Gyropress Method resolves these problems by its new concepts of construction method and structure design. This method enables to install tubular piles with cutting bits attached on piles toe by rotary jack-in system without removing existing underground structures. The installed piles form the both foundation structure and building structure. This method is developed based on the "advantages of the press-in principle" which have over 30 year achievements, and enables to carry out structure regeneration works and reinforcement works with preserving the "Five Construction Principles".

Structures constructed by Gyropress Method can be dismantled and removed. It means, it is possible to plan future functional improvements, restorations to original environment (restoration of nature), relocation, and recycling of construction materials at the design stage.

River Bank Reinforcement in central urban area by Gyropress Method

Contents


Overview of Gyropress Method [™] ·····
GRB™ System · · · · · · · · · · · · · · · · · · ·
Application & Reference Riverbank Reinforcement Road Retaining Wall Construction under Overhead Clearance Res Batter Pile Press-in
■ GYRO PILER [™] Dedicated Models for Vertical Gyropress / Ba For Ultra-low Overhead Clearance / Batter P Power Unit
Auxiliary Equipment Lubrication System Crane Attachment Driving Attachment
Standard Press-in Procedures Initial Press-in Standard Installation

Construction Revolution Gyropress Method

• •		·	·	·							Ū	Ū	ľ		÷	÷														I
• •		۰	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	۰	•	•	•	•	•	•	•	•	•	•	٠	3
																														5
• •	• •	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•	•	٠	٠	٠	٠	٠	6
R	es	str	ic	cti	0	n		٠	٠	٠	٠	٠	۰	٠	٠	۰	٠	۰	٠	٠	٠	۰	۰	۰	٠	٠	٠	٠	۰	7
• •	• •	•	•	•	٠	٠	٠	•	•	٠	٠	٠	•	•	•	•	•	٠	٠	٠	•	•	•	•	٠	•	•	٠	٠	8
																														9 10 10
r∣		ile	;	n	S	ta	ıll •	a	ti	IC.	ſ	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	10
	Pi	ile	• •	n	S	ta	•	a	tio	וכ	n	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	10 10
•r	Pi	ile	• •	n	S ·	ta	· ·	a	tie	וכ	n	• • •	• • •	• •	• •	• • •	• •	• • •	• • •	• • •	• •	• • •	• • •	• • •	• • •	• •	• •	• • •	•	10 10 11
•r	Pi	ile	• • •	n •	S • •	ta	•	a	tio	וכ	n	• • •	•	• • •	• • •	•	• • •	• • •	• • •	• • •	• • •	• • • •	• • • •	• • • •	• • •	• • •	• • •	• • • •	•	10 10 11 11

Overview of Gyropress Method

Realisation of pile penetration by the tubular piles with gyropress coring bits and "Gyropress Force" generated from press-in & gyration.

Features of Gyropress Method

Openetrating through Hard Ground and Concrete Obstructions

Press-in Method is available where ground condition is so hard that conventional methods cannot overcome and where there is underground obstacle such as concrete structures.

\diamond Working Under Physical Restrictions (GRB System)

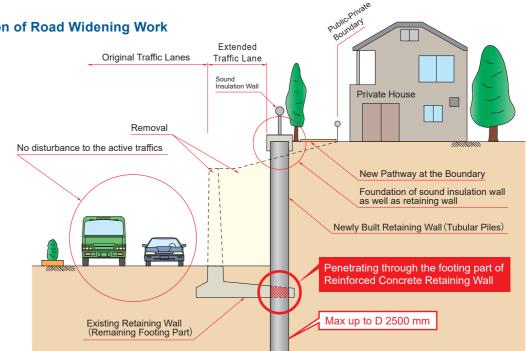
Because Press-in Method can provide piling condition with minimum working area, it is the best to be selected for working under severe physical restrictions such as narrow locations and underneath overhead obstructions. In addition, it does not require temporary working platforms.

Environmentally-friendly Construction (Controlling Soil Displacement/Environmentally-friendly considerations)

Soil displacement can be minimised by leveraging rotary cutting mechanism with special bits on the pile toe. It makes the piling work more environmentally-friendly.

Furthermore biodegradable oil and grease are adopted to GYRO PILER. They are naturally degraded and do not damage ecologic system, if they are flown out into water or soil in any possibility.

Adoption of Large-Diameter Piles allows Economical Constructions

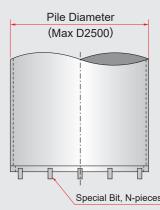

GYRO PILER can be used for variety of pile diameter sizes, pile arrangements and the combination of batter piles. It allows to select economically optimal structure design.

Construction works can be carried out with Environmentally-friendly considerations, lower cost and shorter work duration at any work conditions.

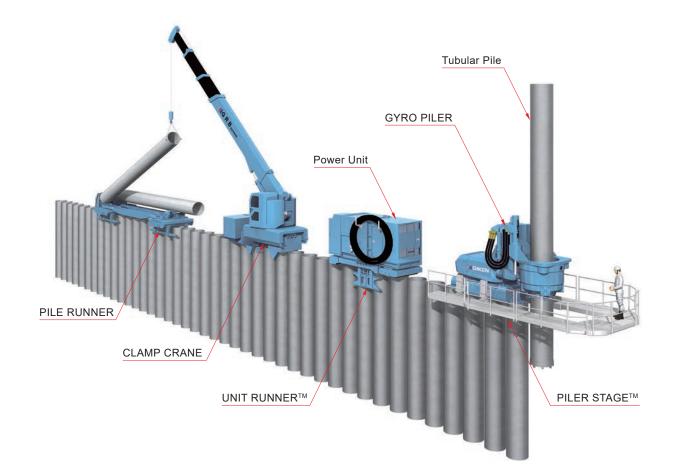
Epoch-making Design Concept for Regeneration and Reinforcement of Function without Removing Underground Structure.

Gyropress Method can carry out regeneration works and reinforcement works without removing underground structures. GYRO PILER can directly install structural material which eventually forms both foundation part and structural part with Gyropress Method, construction works can be carried out with less work processes and least negative impact to surrounding environment including economic activities. In addition, the completed structure has ideal level of quality.

Application of Road Widening Work

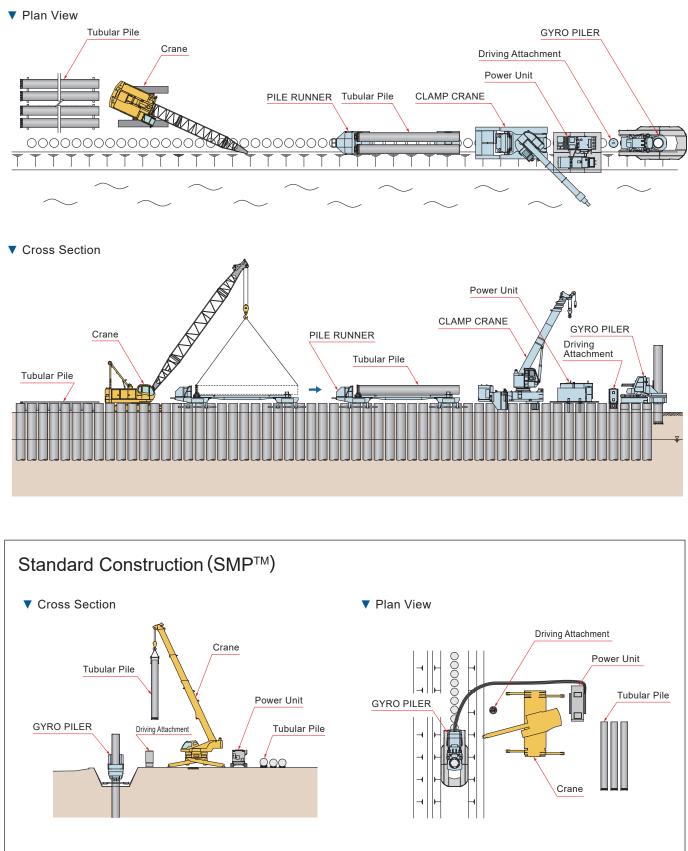

Cutting Reinforced Concrete

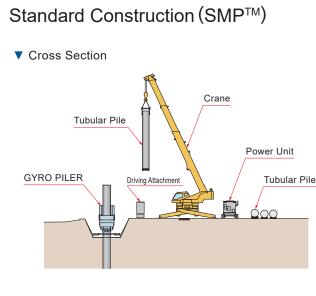
The followings present cutting off performance through reinforced concrete (t = 80 cm, $\sigma_{c\kappa}$ = 24 N/mm², D16@250 x 3 layers).


Overcoming various ground conditions by selecting bit arrangements.

GRB System for "Temporary Work Less" Construction

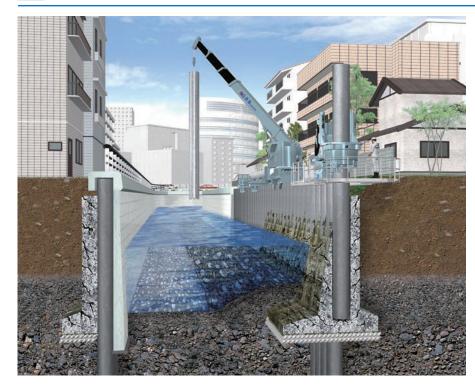
GRB System is the construction technology which performs all of piling works such as pile conveying, pile pitching and press-in work on top of completed piles. With the press-in machine (GYRO PILER) in the front, Power Unit as a power source, CLAMP CRANE[™] to pitch piles and PILE RUNNER[™] to convey piles from work base perform on top of pile head as working orbit. All machines are self-supported by holding existing piles with less risk of overturning. Temporary working platform or detour road is not required even at waterfront, narrow land, slope and low overhead clearance condition since influence range of work is minimised to just the width of those machinery. GRB System enables to construct just wall structure which is its original purpose of construction without any temporary works.





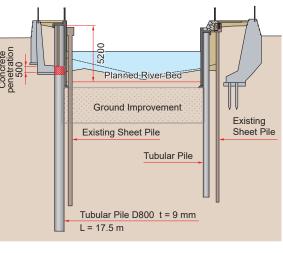
Standard Machine Layout

GRB System



Construction Revolution Gyropress Method

S Riverbank Reinforcement


Gyropress Method can be applied for tough work conditions such as flood countermeasure works and seismic countermeasure works at residential areas. Because GYRO PILER can install piles through existing underground structure, the piling work can be carried out without disturbing cross-section area of river and active vessel traffics.

Reference

Riverbank Construction Work at South Feeder Stream, OYOKOGAWA-River Tokyo, Japan

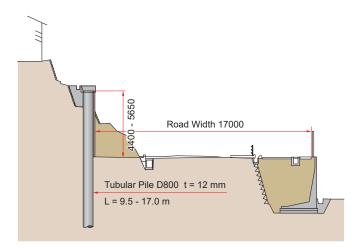
A riverbank protection work was carried out with GRB System. Piles were installed through existing structure at a narrow canal where there is no access for a large barge crane.

Before Construction

Road Retaining Wall

Reference Retaining Wall Construction Work for KASEDA Road Widening

Press-in into shaley sandstone layer (Extrapolated SPT N Value: 750) A compact construction work with consideration for surrounding environment at the narrow land between a hospital and a prefectural road.



Construction Revolution Gyropress Method

Retaining wall can be easily constructed by continuos tubular pile wall with interlock pieces. Urban function is able to be evolved without disturbing active traffic and surrounding environment even at urban congested area by GRB System that various construction machines such as CLAMP CRANE, and other associated machines work on the top of tubular piles.

Kagoshima, Japan

Construction under Overhead Clearance Restriction

Even beneath overhead obstructions, construction work can be carried out with the compact GYRO PILER. This is possible because press-in machines grip a pile close to the head of completed piles. Especially in cases where overhead clearance is severely limited, the specially designed short model of GYRO PILER should be selected.

Reference Furukawa River Renovation Work

Tokyo, Japan

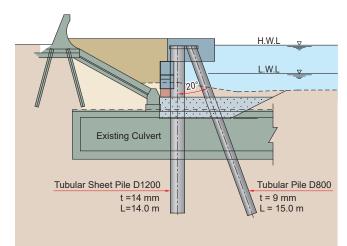
Construction Work at Low Overhead Clearance (6.0m) with GYRO PILER. A new bank protection work with penetrating existing protection bank without giving any impact on current surrounding functions.

Before Construction

🚺 Batter Pile Press-in

Reference Reinforcement Construction Work at TOMISUHARA Harbor

Batter piles were installed by GYRO PILER for reinforcement of a tubular sheet pile wall.



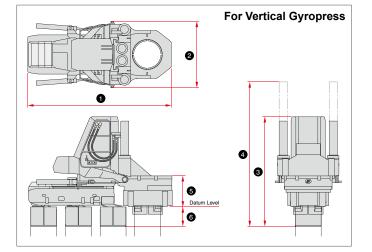
Construction Revolution Gyropress Method

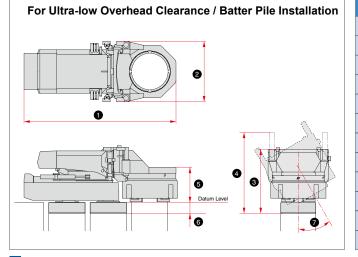
GYRO PILER has a lateral tilting function. It enables to install batter piles and anchor piles. It can construct high modulus retaining walls.

Mie, Japan

GYRO PILER

Dedicated Models for Vertical Gyropress, Batter Pile Installation

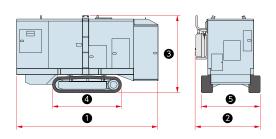




Models	F301-G1000	GRV1226 (SP5)	GRV1230 (SP12)	F401-G1200	F501-G1500	GRV2540 (SP11)
Press-in Force	800 kN	2600 kN	3000 kN	2000 kN	4000 kN	4000 kN
Stroke	850 mm	1300 mm	1300 mm	1000 mm	1200 mm	1500 mm
 Length 	4000 mm - 5300 mm	5060 mm - 6110 mm	5620 mm - 7360 mm	5735 mm - 7955 mm	7000 mm - 9500 mm	8900 mm - 11910 mm
2 Width	1800 mm	2200 mm	2130 mm	2070 mm	2460 mm	3330 mm
B Height	2815 mm	3640 mm	4365 mm	3290 mm	4310 mm	5535 mm
4 Max. Height	3660 mm	4800 mm	5150 mm	4255 mm	5215 mm	6440 mm
Chuck Height	1235 mm	1330 mm	1935 mm	1490 mm	2355 mm	2325 mm
6 Clamp Depth	520 mm	650 mm	800 mm	600 mm	700 mm	1250 mm
Mast Inc. Angle						
Power Unit	EU300K4	EU5	00A3		EU500C3	
Mass	18450 kg(D1000)	32350 kg(D1200)	47400 kg(D1200)	33600 kg(D1200)	68600 kg(D1500)	105000 kg(D2500)
Applicable Pile	D600, 800, 1000	D1000 - 1200	D1000 - 1200	D800 - 1200	D1200, 1500	D2000 - 2500

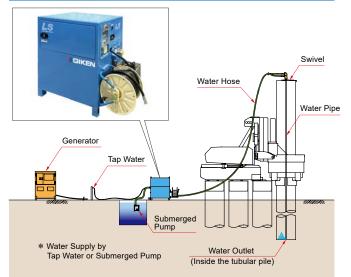
For Ultra-low Overhead Clearance / Batter Pile Installation

Power Unit

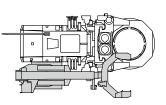


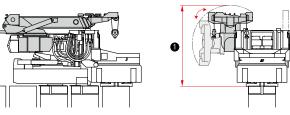
Models		EU300K4	EU500A3	EU500C3	EU500B4		
Length		4310 mm	4900 mm	4900 mm	5280 mm		
2 Width		2065 mm	2350 mm	2350 mm	2350 mm		
B Height		2550 mm	2630 mm	2700 mm	2700 mm		
Crawler Len	gth	2110 mm	2855 mm	2855 mm	2855 mm		
Crawler Width		1800 mm	2300 mm	2300 mm	2300 mm		
Power Source		Diesel Engine					
Data d Outaut	Power Mode	265 kW/ 1800min ⁻¹	377 kW/ 1800min-1	377 kW/ 1800min-1	350 kW/ 1800min-1		
Rated Output	Eco Mode	236 kW/ 1600min ⁻¹	335 kW/ 1600min-1	335 kW/ 1600min-1	311 kW/ 1600min-1		
Fuel Tank Capacity		600 L	850 L	850 L	800 L		
Oil Tank Capacity		630 L	700 L	660 L	660 L		
Moving Speed			1.4 k	m/h			
Mass		7550 kg	11500 kg	10950 kg	11050 kg		

GRAL1520 (SP8A)



Models	GRAL1015(SP6)	GRAL1520(SP8)
Press-in Force	1500 kN	2000 kN
Stroke	700 mm	800 mm
Length	4795 mm - 6110 mm	6160 mm - 9100 mm
2 Width	2240 mm	3440 mm
Height	2365 mm	3180 mm
4 Max. Height	3000 mm	3620 mm
G Chuck Height	1160 mm	1555 mm
Clamp Depth	300 mm	470 mm
Mast Inc. Angle	30 Degrees, Either Side	29 Degrees, Either Side
Power Unit	EU5	00B4
Mass	22500 kg (D1000)	43460 kg (D1500)
Applicable Pile	D800 - 1000	D1200 - 1500




Auxiliary Equipment

Lubrication System

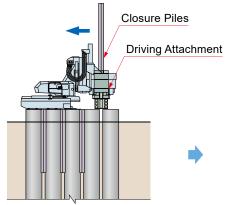
Crane Attachment

(SP8)

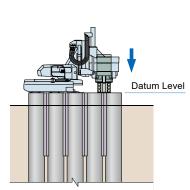
2.9 ton

2000 kg

* Example for using water as lubricant.

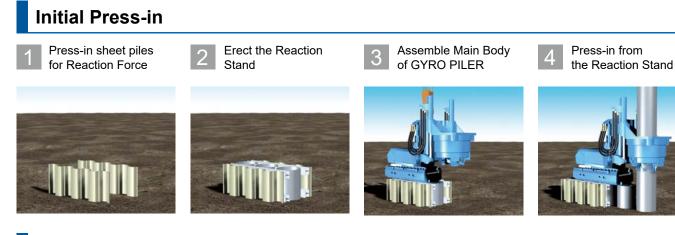

Input Voltage (3 phases)	AC200V, 50/60Hz, 24KVA or more
Water Pump Discharge Rate	Max. 60 ℓ/min
Water Pump Discharge Pressure	Max. 6 MPa
Outer Dimensions (W x D x H)	1505 × 755 × 1230 mm
Water Tank Capacity	300 L
Mass (without water)	410 kg

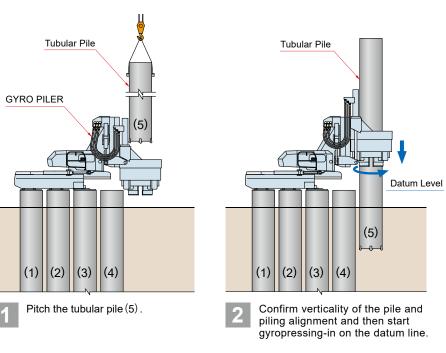
Driving Attachment

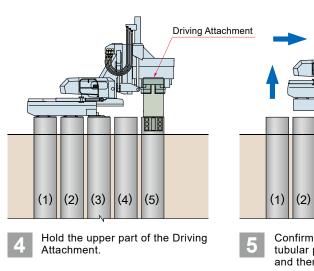

The attachment is used to install closure piles follolwing the tubular pile installation.

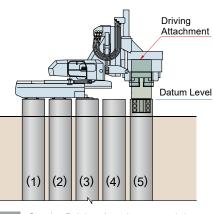
Attach the Driving Attachment into the Chuck and set out the closure pile at installation position.

Install the closure pile to the required depth.

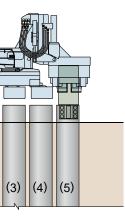

♦ Closure Piles ▼ Equal Angle

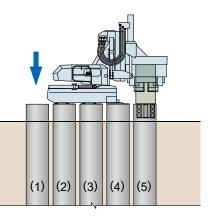

Small diameter pipe




Standard Press-in Procedures

Standard Installation





Set the Driving Attachment and then press-in the pile up to the datum level.

Confirm bearing resistance of tubular pile (5), move up main body and then make self-walking.

Lower the main body and complete self-walking. Remove the Driving Attachment. Then, repeat steps 1 though 6.